QUIZ 17 SOLUTIONS: LESSONS 22-23 OCTOBER 26, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. $[4 \mathrm{pts}]$ Find $\frac{d z}{d t}$ given

$$
z=x^{2} y^{2}, \quad x=\sin t, \quad y=7 t^{4}
$$

Write your answer in terms of x, y, t.
Solution: We use the chain rule for multivariable functions:

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

We find our four pieces:

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2} y^{2}\right) \\
& =y^{2}\left[\frac{\partial}{\partial x} x^{2}\right] \\
& =y^{2}(2 x)=2 x y^{2} \\
\frac{\partial z}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2} y^{2}\right) \\
& =x^{2}\left[\frac{\partial}{\partial y}\left(y^{2}\right)\right] \\
& =x^{2}(2 y)=2 x^{2} y \\
\frac{d x}{d t} & =\cos t \\
\frac{d y}{d t} & =28 y^{3}
\end{aligned}
$$

Thus,

$$
\frac{d z}{d t}=\left(2 x y^{2}\right)(\cos t)+\left(2 x^{2} y\right)\left(7 t^{4}\right)
$$

2. Let

$$
g(x, y)=\frac{1}{2} x^{2}+x y+\frac{9}{4} y^{4}-2 .
$$

(a) $[3 \mathrm{pts}]$ Find all the critical points of $g(x, y)$.

Solution: We find the critical points. Differentiating, we get

$$
g_{x}=x+y \quad \text { and } \quad g_{y}=x+9 y^{3} .
$$

We set these equal to zero and solve for (x, y). Write

$$
0=g_{x}=x+y \quad \Rightarrow \quad x=-y
$$

and

$$
0=g_{y}=x+9 y^{3} \quad \Rightarrow \quad 0=-y+9 y^{3} \quad \Rightarrow \quad 0=y\left(-1+9 y^{2}\right)
$$

Then, either $y=0$ or $-1+9 y^{2}=0$. If $-1+9 y^{2}=0$, then

$$
9 y^{2}=1 \quad \Rightarrow \quad y^{2}=\frac{1}{9}
$$

Hence, $y= \pm \frac{1}{3}$. Putting this together, we see that our critical points are

$$
\left(\frac{1}{3},-\frac{1}{3}\right) \quad \text { and } \quad\left(-\frac{1}{3}, \frac{1}{3}\right) \text {. }
$$

(b) $[1 \mathrm{pt}]$ Write down the discriminant of $g(x, y)$.

Solution: The discriminant of $g(x, y)$ is given by

$$
D(x, y)=g_{x x} g_{y y}-\left(g_{x y}\right)^{2} .
$$

Since

$$
g_{x x}=1, \quad g_{y y}=27 y^{2}, \quad g_{x y}=1,
$$

we see

$$
D(x, y)=(1)\left(27 y^{2}\right)-(1)^{2}=27 y^{2}-1 .
$$

(c) [2 pts] Classify all the critical points of $g(x, y)$.

Solution: We need to check our two critical points. Write

$$
\begin{aligned}
D\left(\frac{1}{3},-\frac{1}{3}\right) & =27\left(-\frac{1}{3}\right)^{2}-1 \\
& =27\left(\frac{1}{9}\right)-1 \\
& =3-1=2>0 \\
D\left(-\frac{1}{3}, \frac{1}{3}\right) & =27\left(\frac{1}{3}\right)^{2}-1 \\
& =27\left(\frac{1}{9}\right)-1 \\
& =3-1=2>0
\end{aligned}
$$

Critical Point	$D\left(x_{0}, y_{0}\right)$	$g_{x x}\left(x_{0}, y_{0}\right)$	Classification
$\left(\frac{1}{3},-\frac{1}{3}\right)$	$2>0$	$1>0$	local min
$\left(-\frac{1}{3}, \frac{1}{3}\right)$	$2>0$	$1>0$	local min

